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Abstract. Neutrino oscillations are analyzed in an accelerating and rotating reference frame, assuming
that the gravitational coupling of neutrinos is flavor dependent, which implies a violation of the equivalence
principle. Unlike the usual studies in which a constant gravitational field is considered, such frames could
represent a more suitable framework for testing if a breakdown of the equivalence principle occurs, due to
the possibility to modulate the (simulated) gravitational field. The violation of the equivalence principle
implies, for the case of a maximal gravitational mixing angle, the presence of an off-diagonal term in the
mass matrix. The consequences on the evolution of flavor (mass) eigenstates of such a term are analyzed for
solar (oscillations in the vacuum) and atmospheric neutrinos. We calculate the flavor oscillation probability
in the non-inertial frame, which does depend on its angular velocity and linear acceleration, as well as on
the energy of neutrinos, the mass-squared difference between two mass eigenstates, and on the measure of
the degree of violation of the equivalence principle (∆γ). In particular, we find that the energy dependence
disappears for vanishing mass-squared difference, unlike the result obtained by Gasperini, Halprin, Leung,
and other physical mechanisms proposed as a viable explanation of neutrino oscillations. Estimations on
the upper values of ∆γ are inferred for a rotating observer (with vanishing linear acceleration) comoving
with the earth, hence ω ∼ 7 · 10−5 rad/sec, and all other alternative mechanisms generating the oscillation
phenomena have been neglected. In this case we find that the constraints on ∆γ are given by ∆γ ≤ 102

for solar neutrinos and ∆γ ≤ 106 for atmospheric neutrinos.

1 Introduction

The possibility that neutrino particles could oscillate in
different flavor states is one of the most discussed problems
of today’s theoretical and experimental physics.

Neutrino oscillations in the vacuum occur owing to the
non-degeneration of the mass-matrix eigenvalues and to
the difference of the mass eigenstates from weak inter-
action eigenstates. They have been introduced by Pon-
tecorvo and Bilenky as a possible solution to the deficiency
of the solar neutrino flux [1–3] and to the atmospheric neu-
trino problem [4]. An alternative solution to the observed
solar neutrino deficit is given by the Mikheyev–Smirnov–
Wolfenstein (MSW) mechanism [5], according to which
neutrino oscillations are appreciably enhanced when cross-
ing dense matter, as within the sun or other stars and in
the early universe.

Another possibility to generate neutrino oscillations,
one that will be used in this paper, is to suppose that
neutrinos violate the equivalence principle through a dif-

a e-mail: lambiase@sa.infn.it

ferent coupling of flavor eigenstates to gravity [6–8]. The
main consequences of this approach are

(i) a linear dependence on the neutrino energy in the
equation of evolution of the flavor states, which is dif-
ferent in comparison to the standard case, and

(ii) neutrino oscillations can occur even if neutrinos are
massless particles.

Other alternative mechanisms have been proposed in the
literature. We mention some of them: neutrino decay [9],
Lorentz invariance [10], flavor changing neutral current
[11], non-minimal couplings of neutrinos to a torsion field
[12], and string inspired equivalence principle violation
[13].

Very recently a lot of attention has been given to the
physics of neutrinos propagating in curved backgrounds,
in particular the effects of gravitational fields on the quan-
tum mechanical phase of massive neutrinos [14–22]. It was
shown in [14] that the gravitational correction to the neu-
trino phase is proportional to GN∆m

2, where GN is the
Newtonian gravitational constant and ∆m2 = |m2

2 −m2
1|

is the mass-squared difference. Nevertheless, in other ap-
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proaches, as for example in [15,16], such a term is can-
celled. All these results have been carried out in the frame-
work of general relativity. It is worth to note that extend-
ing the analysis of [15,16] to the Brans–Dicke theory of
gravity, a term proportional to GN∆m

2 is recovered [17]
and it vanishes in the limit in which the parameter char-
acterizing the Brans–Dicke theory (ω) tends to infinity
[23]. In this limit the Brans–Dicke theory coincides with
general relativity in all its predictions [23,24].

On the other hand, experiments of recent years have
led to convincing evidence for the existence of neutrino os-
cillations, with strong constraints of the theoretical models
discussed above.

Such results have been found in different experiments:

(1) solar neutrino experiments [25–29],
(2) atmospheric neutrino experiments [30–34], and
(3) the accelerator LSND experiment [35]. Nevertheless,

we have to note that many other neutrino oscillation
experiments, with neutrinos produced by reactors and
accelerators, did not find any evidence of neutrino os-
cillations.

The best fit in favor of neutrino oscillations are ob-
tained for the following cases [36]:

(1) (MSW) small angle mixing region

∆m2 � (3 ÷ 10) · 10−6 eV2, (1)

sin2 2θexp � (0.6 ÷ 1.3) · 10−2;

(2) (MSW) large angle mixing region

∆m2 � (1 ÷ 20) · 10−5 eV2, sin2 2θexp � 0.5 ÷ 0.9;
(2)

(3) solar vacuum oscillation

∆m2 � (0.5 ÷ 5) · 10−10 eV2, (3)

sin2 2θexp � 0.67 ÷ 1;

(4) atmospheric neutrino oscillation (see also [37,38])

∆m2 � (10−3 ÷ 10−2) eV2, sin2 2θexp ≥ 0.8, (4)

∆m2 � (0.5 ÷ 6) · 10−3 eV2, sin2 2θexp ≥ 0.82;

(5) LSND experiment

∆m2 � (0.2 ÷ 10) eV2, (5)

sin2 2θexp � (0.2 ÷ 3) · 10−2.

θexp is the experimental mixing angle. In the following,
we will consider only the case of atmospheric and solar
neutrino oscillations in the vacuum.

In this paper we analyze neutrino flavor oscillations
in a non-inertial reference frame assuming the violation
of the equivalence principle. Following [20] we derive the
equation of evolution of neutrino states, which contains a

non-vanishing gravitational term coming from the spino-
rial connections when calculated for the metric of a rotat-
ing and accelerating observer [39]. In order to have grav-
itationally induced flavor mixing we suppose a flavor de-
pendence of the gravitational coupling, following the con-
jecture advanced by Gasperini and, independently, by Hal-
prin and Leung. This opens a new scenario with respect to
all previous papers [6–8,40,41] in which only effects due
to the scalar gravitational field φ have been considered.
Besides, the advantage to use non-inertial frames for test-
ing a flavor non-diagonal coupling of neutrinos to gravity,
is related to the possibility to modulate the gravitational
field, simulated by the acceleration and angular velocity
of the reference frame.

Constraints on the parameter characterizing the non-
universal gravitational coupling with neutrino flavors,∆γ,
are derived for observers comoving with the earth (with
vanishing acceleration). Furthermore, we also assume that
the mixing angle θ̃ measured by such observers is the mix-
ing angle measured in the experiments, θ̃ ≡ wθexp, and θ
(θG), the usual mixing angle relating the flavor basis with
the mass (gravitational) basis, is a free parameter. Finally,
we neglect all other alternative mechanisms inducing the
oscillation phenomena, as, in particular, the gravitational
fields generated by the earth, confining ourselves to the
consideration of only inertial effects and the violation of
the equivalence principle.

The consequence of the violation of the equivalence
principle on neutrino flavor mixing, when analyzed in non-
inertial frames, is the appearence of an off-diagonal term
in the flavor mass-matrix which is proportional to ∆γω ·
p, ω being the angular velocity of the observer and p
the momentum of the neutrino. It is this contribution to
the oscillations that gives rise to new effects which could
provide a peculiar signature for probing if a violation of
the equivalence principle occurs. In particular we find the
following.

(i) For vanishing mass-squared difference,∆m2 = 0, and
for maximal gravitational mixing angle θG = π/4,
we define an effective mass-squared difference ∆m2

eff
which is proportional to ∼ ∆γωE, where E ∼ p is
the neutrino energy. Determining ∆γ, whose upper
limit turns out to be of the order 102 for solar neu-
trinos (with energy ∼ 20MeV), and 106 for atmo-
spheric neutrinos (with energy ∼ 10 ÷ 102 GeV), we
infer ∆m2

eff ∼ 10−10 eV2 for the former, and ∆m2
eff ∼

10−3 ÷ 10−2 eV2 for the latter. Both values of ∆m2
eff

are in agreement with the best fit of the experimental
data.

(ii) The flavor mixing probability is energy independent
when ∆m2 = 0. This implies a different behavior
in comparison to the other alternative mechanisms
[6–10]. It must be noted that an energy-independent
probability is also derived in [11,12].

The organization of this paper is as follows. In Sect. 2
we briefly discuss the Dirac equation in curved space-time
and calculate the probability that neutrino flavor oscilla-
tions occur with respect to an accelerating and rotating
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observer. In Sect. 3 we discuss the phenomenological con-
sequences of inertial effects on the solar neutrino problem.
Section 4 is devoted an analysis of the inertial effects on so-
lar neutrinos produced by interactions of the cosmic rays
with the solar atmosphere. In Sect. 5 we apply such an
analysis to atmospheric neutrinos. Conclusions are drawn
in Sect. 6.

2 Neutrino oscillations
in an accelerating and rotating frame

As in [20], the generalized neutrino phase is given by (here-
after we use the natural units � = c = 1)

|ψf (λ)〉 =
∑

j

Ufje
i
∫ λ

λ0
P ·pnulldλ′ |νj〉, (6)

where f is the flavor index and j the mass one. Ufj are
the matrix elements transforming flavor and mass bases,
P is the four-momentum operator generating space-time
translations of the eigenstates and pµnull = dxµ/dλ is the
tangent vector to the neutrino worldline xµ, parameterized
by λ. The covariant Dirac equation in curved space-time
[42] is

[iγµ(x)Dµ −m]ψ = 0,

where the matrices γµ(x) are related to the usual Dirac
matrices γâ by means of the vierbein fields eâµ(x), where
the Greek (Latin with hat) indices refer to curved (flat)
space-time. Dµ is defined as Dµ = ∂µ+Γµ(x), where ∂µ is
the usual derivative and Γµ(x) is the spinorial connection
defined by

Γµ(x) =
1
8
[γâ, γ b̂]eνâeνb̂;µ

(a semicolon represents the covariant derivative). The re-
lations

γâ[γ b̂, γ ĉ] = 2ηâb̂γ ĉ − 2ηâĉγ b̂ − 2iεd̂âb̂ĉγ5γd̂,

where ηâb̂ is the metric tensor in flat spacetime, εd̂âb̂ĉ is
the totally antisymmetric tensor, γ5 = iγ0̂γ1̂γ2̂γ3̂, and
{γ5, γâ} = 0, allow one to recast the non-vanishing con-
tribution from the spin connection in the form

γâeµâΓµ = γâeµâ

{
iAGµ

[
−(−g)−1/2 γ

5

2

]}
, (7)

where

Aµ
G =

1
4
√−g eµâεd̂âb̂ĉ(eb̂ν,σ − eb̂σ,ν)e

ν
ĉ e

σ
d̂
, (8)

and g ≡ det(gµν). gµν is the metric tensor of curved space-
time. The momentum operator Pµ, used to calculate the
phase of neutrino oscillations, is derived from the mass
shell condition

(Pµ +AGµPL)(Pµ +Aµ
GPL) = −M2

f , (9)

where PL is the left-handed projection operator and M2
f

is the vacuum mass matrix in the flavor base

M2
f = U

(
m2

1 0
0 m2

2

)
U†, U =

(
cos θ sin θ

− sin θ cos θ

)
. (10)

θ is the vacuum mixing angle. Ignoring terms of the order
O(A2

G) and O(AGMf ), one gets that, for relativistic neu-
trinos moving along generic trajectories parameterized by
λ, the column vector of flavor amplitude

χ(λ) =
( 〈νe|ψ(λ)〉

〈νµ|ψ(λ)〉
)

(11)

satisfies the equation

i
dχ
dλ

=

(
M2

f

2
+ p ·AGPL

)
χ. (12)

In deriving (12), one uses the relation P 0 = p0 and P i ≈ pi
[20]. In an accelerating and rotating frame, the vierbein
fields eâµ(x) are given by [39]

e0̂0 = 1 + a · x, e0̂m = 0, ek̂0 = εk̂l̂m̂ωl̂xm̂, ek̂l = δkl ,
(13)

where k, l,m = 1, 2, 3, xµ = (x0,x) are the local coordi-
nates for the observer at the origin and a, ω are the ac-
celeration and angular velocity of the frame, respectively.
The components eµâ(x) and eµâ(x) are calculated by using
the metric tensors gµν and ηâb̂, with gµν given by the line
element [39]

ds2 = [(1 + a · x)2 + (ω · x)2 − (ω · ω)(x · x)](dx0)2

− 2dx0dx · (ω ∧ x) − dx · dx. (14)

Inserting (13) into (8), one gets the components of Aµ
G:

A0
G = 0, AG =

√−g
2

1
1 + a · x

{2ω−[a∧(x∧ω)]}. (15)

Notice in (12) that the amount of neutrino mixing depends
on the direction of the neutrino momentum with respect
to the angular velocity and acceleration of the reference
frame.

The gravitational term Aµ
G in (12) does not give any

contribution to the flavor mixing (it is flavor diagonal).
The last one, in fact, occurs only as a consequence of a
breakdown of the universality of the gravitational coupling
of neutrinos with different flavors. This assumption allows
one to re-write (12) in the form [40]

i
d
dλ

(
ae
aµ

)
=
[
∆

2

(− cos 2θ sin 2θ
sin 2θ cos 2θ

)

+ ∆γp · AG

(− cos 2θG sin 2θG
sin 2θG cos 2θG

)](
ae
aµ

)
, (16)

where af ≡ 〈νf |ψ(λ)〉, f = e, µ, and ∆γ = γ1 − γ2 is a
measure of the equivalence principle violation, γ1 and γ2
being the two different couplings of the neutrino flavors to
AG. In (16) ∆ ≡ ∆m2/2. The term ∆γp·AG in (16) is the
analogue of the term ∆γE|φ| for neutrinos propagating
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in a gravitational field φ. For the sake of simplicity, we
consider the case of a maximal gravitational mixing angle,
i.e. θG = π/4. Then (16) becomes

i
d
dλ

(
ae
aµ

)
= T

(
ae
aµ

)
, (17)

where the matrix T is defined by

T =


 −∆

2
cos 2θ

∆

2
sin 2θ +∆χ

∆

2
sin 2θ +∆χ

∆

2
cos 2θ


 (18)

up to the (m2
1 + m2

2)/2 term, proportional to the iden-
tity matrix. Here ∆χ ≡ ∆γp · AG. We restrict to the
flavors e, µ, but this analysis works also for different neu-
trino flavors. To determine the mass eigenstates |ν1〉 and
|ν2〉, corresponding to a fixed value of the acceleration and
angular velocity of the frame, one has to diagonalize the
matrix T . Using the standard procedure, one writes the
mass eigenstates as a superposition of flavor eigenstates

|ν1(λ)〉 = cos θ̃(λ)|νe〉 − sin θ̃(λ)|νµ〉, (19)

|ν2(λ)〉 = sin θ̃(λ)|νe〉 + cos θ̃(λ)|νµ〉,

where the mixing angle θ̃ is defined in terms of the vacuum
mixing angle

tan 2θ̃ =
∆ sin 2θ + 2∆γp · AG

∆ cos 2θ
. (20)

We note that θ̃ → θ as AG → 0 (i.e. a → 0,ω → 0). The
corresponding eigenvalues are

τ1,2 = ±
√
∆2

4
cos2 2θ +

[
∆

2
sin 2θ + (∆γp · AG)

]2
. (21)

Writing |ψ(λ)〉 = a1(λ)|ν1〉 + a2(λ)|ν2〉, (17) assumes the
form

i
d
dλ

(
a1
a2

)
=

(
τ1 0
0 τ2

)(
a1
a2

)
, (22)

where ak = 〈νk|ψ(λ)〉, k = 1, 2, and

(
a1
a2

)
= Ũ

(
ae
aµ

)
, Ũ =

(
cos θ̃ sin θ̃

− sin θ̃ cos θ̃

)
. (23)

We have used the condition dθ̃/dλ ≈ 0 in order that (22)
is a diagonal matrix. This means that we are neglecting
the variations of acceleration and angular velocity, with
respect to the affine parameter λ, in comparing to their
magnitudes. Equation (22) implies

ak(λ) = ak(0) exp[−iαk(λ)], (24)

αk(λ) ≡
∫ λ

λ0

τkdλ′, k = 1, 2.

For the initial condition |ψ(0)〉 = |νe〉, the state |ψ(λ)〉 is
|ψ(λ)〉 = [cos2 θ̃eiα + sin2 θ̃e−iα]|νe〉

+ [− cos θ̃ sin θ̃eiα + sin θ̃ cos θ̃e−iα]|νµ〉, (25)

where α = α1 = −α2. The probability to observe an elec-
tronic neutrino is therefore

Pνe→νe ≡ |〈νe|ψ(λ)〉|2 = 1 − sin2 2θ̃ sin2 α. (26)

In the next sections we will discuss the particular case of
rotating reference frames in order to estimate the contri-
butions to neutrino oscillations when inertial effects and
the equivalence principle violation are taken into account.

3 Inertial effects on solar neutrinos

Consequences of inertial effects on neutrino oscillations
can be derived from (20). We consider the case of a vanish-
ing linear acceleration, a = (0, 0, 0), so that the reference
frame is only rotating. Then (20) reads

tan 2θ̃ = tan 2θ +
4∆γω · p

∆m2 cos 2θ
. (27)

Before starting with our analysis, it is worth to spend some
words on the main sources of solar neutrinos. The main
emission of electron neutrinos is due to the reactions [43]

p+ p→ d+ e+ + νe, E ≤ 0.42MeV,
e− + 7Be → 7Li + νe, E ∼ 0.86MeV,
8B → 8Be + e+ + νe, E ≤ 20MeV.

Neutrinos produced by these reactions are called pp, 7Be,
and 8B neutrinos, respectively. The first ones give the ma-
jor contribution to the flux, the second ones contribute
about 10%, and, finally, the 8B neutrinos constitute a very
small part of the total flux. Nevertheless, due to the high
threshold energy in experiments, the 8B neutrinos with
energy of the order 20MeV give the major contribution
to the event rates. For example, in the Homestake exper-
iment with threshold energy E ∼ 0.81MeV, pp neutrinos
cannot be detected, and 8B and 7Be neutrinos contribute
with 77% and 15% to the event rate, respectively. Thus,
in the following, we will confine ourselves to 8B neutrinos.

In (27), the mixing angle θ̃ measured by the rotating
observer is interpreted as the experimental mixing angle
θexp. θ then is a free parameter (let us remember that we
have put θG = π/4). In this sense, the rotating observer
is comoving with the earth so that ω is given by ω ∼
7 · 10−5 rad/sec. Taking into account the angle β = 66.5◦
of the direction of the angular velocity ω and the direction
of the neutrinos coming from the Sun1, (27) can be recast
in the form

tan 2θ̃ = tan 2θ +∆γ
1.4 · 10−12 eV2

∆m2 cos 2θ
, (28)

1 The rotation axes of the earth is inclined by an angle of
23.5◦ with respect to the normal of the elliptic plane, so that
β = 90◦ − 23.5◦ = 66.5◦
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where the ultra-relativistic condition p ∼ E ∼ 20MeV has
been used.

For the value sin2 2θexp = 1 (θexp = θ̃ = π/4) one gets
tan 2θ̃ → ∞. We have two possibilities:
(1)∆m2 �= 0 and θ = π/4. The vacuum mixing angle mea-
sured by the non-inertial observer does coincide with the
one measured by the inertial observer, θ̃ = θ = π/4. The
probability that electron neutrinos preserve their flavor is,
from (26),

Pνe→νe
= cos2

(
π
∆l

λ1

)
, (29)

where ∆l is the physical distance between the source and
the detection point of the neutrinos and λ1 is the charac-
teristic oscillation length given by

λ1 =
π

∆m2

4E
+∆γω cosβ

. (30)

Assuming λ1 ∼ dSE ∼ 1.5·1011 m (dSE is the distance sun–
earth), for ∆m2 ∼ 5 · 10−10 eV2 and ∆m2 ∼ 5 · 10−11 eV2,
we get ∆γ ∼ −90 (γ2 > γ1) and ∆γ ∼ 2 · 102 (γ1 > γ2),
respectively.
(2) θ �= π/4 and ∆m2 = 0. In this case either the mass-
matrix is degenerate or the neutrinos are massless parti-
cles. Neutrino oscillations occur as a pure inertial effect
and as a consequence of the equivalence principle viola-
tion. In fact, from the equation of evolution (17), we infer

i
d
dλ

(
ae
aµ

)
= ∆γω · p

[
0 1
1 0

](
ae
aµ

)
. (31)

The flavor transition probability (26) becomes

Pνe→νe = cos2(∆γω cosβ∆l). (32)

The dependence on the energy of the neutrinos disappears
and the probability depends only on the angular velocity
of the rotating observer and on ∆γ. This behavior differs
in a substantial way from alternative mechanisms, in par-
ticular from the equivalence principle violation for neutri-
nos propagating in a gravitational field φ, in which the de-
pendence on the energy has the functional form ∆γφE∆l.
The constraint on ∆γ is now calculated geometrically, i.e.
independent on the energy and on the mass-squared differ-
ences of the neutrinos, from the characteristic oscillation
length coming from (32):

λ2 =
π

|∆γ|ω cosβ (33)

= 1.5 km
(
10−10 eV
∆γω

)

= 2.3 km
(
106 rad/sec
∆γω

)
. (34)

The numerical value of λ2 ∼ dSE ∼ 1.5 ·1011 m leads again
to the value |∆γ| ∼ 102.

The previous results can be read from a different point
of view: Inertial effects simulate neutrino flavor oscilla-
tions as induced by an effective non-zero mass-squared

Table 1. Estimations of ∆γ for given mass-squared difference
∆m2 and mixing angle sin2 2θ̃

∆m2 (eV2) sin2 2θ̃ ∆γ <

5 · 10−11 0.67 5
5 · 10−10 0.67 50
10−9 0.67 9 · 102

difference ∆m2
eff . The last one is derived by equating (33)

to the characteristic oscillation length derived in the stan-
dard description of neutrino oscillations (i.e. 4πE/∆m2

eff).
It then follows that

∆m2
eff = 4|∆γ|Eω cosβ. (35)

For solar neutrinos, (35) implies

∆m2
eff ≈ 10−10 eV2, (36)

which is in agreement with the best fit of the experimental
data.

Let us discuss, finally, the particular case of vanishing
vacuum mixing angle θ, θ = 0. Equation (28) reduces to
the form

tan 2θ̃ = ∆γ
1.45 · 10−12 eV2

∆m2 . (37)

In Table 1, the values of ∆γ corresponding to different
experimental values of ∆m2 and sin2 2θ̃ are reported. Val-
ues of the mass-squared difference ∆m2 ∼ 5 · 10−11 ÷ 5 ·
10−10 eV2 and sin2 2θ̃ ∼ 0.67 yield the range of variability
for |∆γ| given by ∆γ ∼ 10 ÷ 102.

The survival probability (26) becomes

Pνe→νe
= 1 −A sin2

(
π
∆l

λ3

)
, (38)

where

A =
(4∆γωE cosβ)2

(∆m2)2 + (4∆γωE cosβ)2
, (39)

and
λ3 =

4πE√
(∆m2)2 + (4∆γωE cosβ)2

. (40)

λ3 is the oscillation length. In particular, the probability
that electron neutrinos oscillate in muon neutrinos, for
∆γ ∼ 50, ∆m2 ∼ 5 · 10−10 eV2, and E ∼ 20MeV, is
Pνe→νµ ∼ 0.02.

4 Solar neutrinos generated by cosmic rays

In the previous section we have considered solar neutri-
nos emitted by thermonuclear processes, in agreement to
the standard solar theory. In this section, we will focus
our attention to solar neutrinos produced by interactions
of cosmic rays with the solar atmosphere [44]. The effect
of the interactions is to produce particles which propa-
gate through the sun. They can either decay or give rise
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to secondary interactions which produce other particles,
generating in such a way a cascade of particles. Neutrinos
are produced by the decay of particles, mainly muons, in
the cascade. This scenario is similar to what happens in
the terrestrial atmosphere, when cosmic rays interact with
it. However, the solar atmosphere is less dense at the typi-
cal interaction heights, so that a larger fraction of mesons
will decay producing in the sun a huge amount of neu-
trinos in comparison to the ones produced at the earth.
Electron and muon neutrinos produced through this pro-
cess have an energy of the order of or greater than 10GeV
[44]. The analysis of previous section allows one to get,
for such neutrinos, the following estimates (E ∼ 10GeV).
When θexp = θ̃ = π/4, one has two possibilities:

(1) For ∆m2 �= 0 and θ = π/4, (30) allows one to deter-
mine the value of ∆γ. In fact, by putting λ1 ∼ dSE ∼
1.5 · 1011m and ∆m2 ∼ (0.5÷ 5) · 10−10 eV2, it follows
that ∆γ ∼ 2 · 102.

(2) ∆m2 = 0 and θ �= π/4. We have introduced an effec-
tive mass-squared difference, (35), related to the an-
gular velocity of the observer and the energy of neu-
trinos. Specifying (35) for solar neutrinos generated
by cosmic rays, we get

∆m2
eff = 4∆γEω cosβ = 8∆γ · 10−10 eV2. (41)

Since the geometrical estimation of∆γ gives a value of
the order 102, see (33), (41) implies∆m2

eff ∼ 10−8 eV2.

Finally, we envisage the case θ = 0. Equation (27)
reads

tan 2θ̃ = ∆γ
4Eω cosβ
∆m2 ∼ ∆γ 7.4 · 10−10 eV2

∆m2 . (42)

For ∆m2 ∼ 5 · 10−11 ÷ 5 · 10−10 eV2 and sin2 2θ̃ ∼ 0.67,
(42) allows us to infer the constraint ∆γ ∼ 0.01 ÷ 0.1.
Furthermore, one can calculate the flavor mixing proba-
bility from (26). For ∆γ ∼ 0.1, ∆m2 ∼ 5 · 10−10 eV2, and
E ∼ 10 ÷ 102 GeV, (38) gives the probability Pνe→νµ ∼
0 ÷ 0.06, i.e. it increases with energy.

5 Inertial effects on atmospheric neutrinos

In this section, the previous analysis is extended to the
case of atmospheric neutrinos. We consider neutrinos
crossing the earth (so that the oscillation length is
∼ 12.6 · 103 km) with energies of the order 10 ÷ 102 GeV,
and we put the angle between the angular velocity and the
direction of the neutrinos equal to zero. We also neglect
the neutrino interaction with matter background.

For the value sin2 2θexp = 1 (θexp = θ̃ = π/4) one gets
tan 2θ̃ → ∞. We have, as already said, two possibilities:

(1) ∆m2 �= 0 and θ = π/4. From (30), putting λ1 ∼
12.6 · 103 km, we derive the order of magnitude of ∆γ
reported in Table 2. We get |∆γ| ∼ 105 ÷ 106. Notice
the variation of the sign of ∆γ in passing from ∆m2 ∼
10−3 eV2 to ∆m2 ∼ 10−2 eV2 at E ∼ 10GeV.

Table 2. Estimations of ∆γ for given energies E and mass-
squared difference ∆m2

E (GeV) ∆m2 (eV2) |∆γ| <

10 10−3 6 · 105

10 10−2 4 · 106

102 10−3 106

102 10−2 6 · 105

(2) θ �= π/4 and ∆m2 = 0. Assuming λ2 ∼ 12.6 · 103 km
(β = 0) in (33), one geometrically derives ∆γ ∼ 106.
By using this value, (35) gives

∆m2
eff ∼ 10−3 ÷ 10−2 eV2,

in agreement with the best fit of the experimental
data.

As final case to investigate, we put θ = 0. For the value
sin2 2θ̃ ∼ 0.8, (28) reduces to the form

tan 2θ̃ = ∆γ
4ωE
∆m2 ∼ 2,

from which ∆γ ∼ 105, which is in agreement with the
above estimations. From (38), the maximum of the fla-
vor mixing probability for energies E ∼ 10 ÷ 102 GeV is
Pνe→νµ = 0.12 when∆m2 ∼ 10−3 eV2, and Pνe→νµ = 0.35
when ∆m2 ∼ 10−2 eV2.

6 Conclusions

The problem of neutrino oscillations has been widely dis-
cussed during last years and, though a lot of theories have
been proposed, a definitive solution is still far away. The
main ideas which try to explain the solar neutrino deficit
are based on the vacuum neutrino oscillations and on the
MSW mechanism.

Very recently, attention has been paid to the study of
the effects of gravitational fields and of the violation of the
equivalence principle on the quantum mechanical phase
of mixed states, in particular on neutrino oscillations. In
this paper we have faced this problem by considering the
neutrino flavor mixing in an accelerating and rotating ref-
erence frame.

Inertial effects and the request of the violation of the
equivalence principle induce an additional off-diagonal
term in the flavor mass-matrix, which allows one to write
down a relation between the mixing angles, θ̃, θ and θG(=
π/4), and the mass-squared difference ∆m2, (20). This
equation has several implications that we have analyzed
in a rotating reference frame, with vanishing linear accel-
eration. Such a frame is comoving with the earth, so that
ω ∼ 7 · 10−5 rad/sec, and the mixing angle θ̃ is the one
measured in experiments, θexp.

By putting ∆m2 = 0, we have found that the oscil-
lations are modulated only by the angular velocity of the
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observer and the difference of couplings ∆γ. One can in-
troduce an effective mass-squared difference ∆m2

eff which
simulates the neutrino oscillations effect as induced by
non-vanishing neutrino masses. For solar neutrinos we ge-
ometrically have derived ∆γ ∼ 102 (see (30)), which al-
lows us to determine the effective mass-squared difference
∆m2

eff ∼ 10−10 eV2.
Similar results hold for atmospheric neutrinos. In this

case ∆γ ∼ 106, and the effective mass-squared difference
is of the order ∆m2

eff ∼ 10−3 ÷ 10−2 eV2.
We have also analyzed the solar neutrinos produced

by interactions of cosmic rays with the solar atmosphere.
The energy of such neutrinos is of the order of (or greater
than) 10GeV. ∆γ is ∼ 102, and the corresponding effec-
tive mass-squared difference is ∆m2

eff ∼ 10−8 eV2. When
θ = 0, we have obtained the constraint ∆γ ∼ 10−2.

The constraint on ∆γ estimated for solar and atmo-
spheric neutrinos differs considerably from the one ob-
tained by considering neutrinos propagating in a gravi-
tational field. In fact, for solar neutrinos one has

0.65 ≤ sin2 2θG ≤ 1, 3 · 10−20 < |∆γ| < 3 · 10−18, (43)

obtained for a gravitational field |φ| ∼ 10−5 [40,45]. Such
a discrepancy would suggest to rule out the equivalence
principle violation mechanism as a possible solution to
the solar and atmospheric neutrino problem. Nevertheless,
some comments are in order. First, it must be noted that,
as argued in [19,40], physical results depend on the choice
of the metric when the breakdown of the equivalence prin-
ciple occurs. Second, in deriving (43), the static metric has
a diagonal form (Schwarzschild-like), unlike the one of the
rotating observer where non-diagonal terms are present,
leading to different constraints on ∆γ, as we have seen.
We again stress that estimates of ∆γ have been inferred
by assuming inertial effects (with the equivalence principle
violation) as the only one responsible for oscillations. Of
course, taking into account other alternative mechanisms,
in particular ones induced by the gravitational field of the
earth, inertial effects would give a non-dominant contri-
bution, at least for frames comoving with the earth. A
simple inspection of (16) shows in fact that inertial effects
could play a relevant role only by requiring high frequency
rotating reference frames.

Let us finally compare the previous results with recent
ones in which the relevance of the alternative models has
been investigated. The oscillation lengths derived in the
previous sections are here reported:

λ−1
1 =

∆m2

4πE
+
∆γω cosψ
π

, (44)

λ−1
2 =

∆γω cosψ
π

, (45)

λ−1
3 =

√
(∆m2)2 + (4∆γω cosψ)2

4πE
. (46)

ψ = β = 66.5◦ for solar neutrinos, and ψ = 0 for atmo-
spheric neutrinos. The λi, i = 1, 2, 3, show a differentw
dependence on the energy. As is well known, in the cases
of interest the oscillation length λ depends on the energy

as λ−1 ∼ En. Hence, λ−1
1 corresponds to a standard os-

cillation plus the equivalence principle violation in non-
inertial frames, (n = −1) ⊕ (n = 0); λ−1

2 corresponds to
the equivalence principle violation in non-inertial frames,
n = 0; andw finally, λ−1

3 presents a non-trivial dependence
on the energy, which reduces to the standard oscillation
formula ∆m2/4πE for ∆γ = 0 or ω = 0, and to λ−2

2 for
vanishing mass-squared difference.

The behavior λ−1 ∼ E coming from a flavor violating
gravitational field (as proposed in [6–8]) appeared to fit
the SuperKamiokande data, as well as the other alterna-
tive mechanisms [9,11,46–48]. A different analysis of such
data, including for example upward-going muon events,
has been performed in [49]. In these papers, it is shown
that the best fit does confirm, at least for atmospheric neu-
trinos, the standard scenario as the dominant oscillation
mechanism, whereas the alternative mechanisms do not
provide a viable description of the data. In this analysis,
the authors consider

(i) the equivalence principle violation for neutrino prop-
agating in a gravitational field,

(ii) neutrino decay, and
(iii) the flavor changing neutral currents mechanism in

which the flavor mixing probability is energy inde-
pendent.

In view of these results, in particular the point (iii),
one could conclude that inertial effects together with the
violation of the equivalence principle seem to be disfavored
for atmospheric neutrinos, or at most, they are sublead-
ing processes with small amplitude which coexist with the
leading, large amplitude of the standard oscillations.

Nevertheless, the above conclusions are not definitive
and much more studies are still necessary for understand-
ing the neutrino physics and whether inertial effects could
provide, as suggested in this paper, further tests for prob-
ing the validity of the equivalence principle violation.
Moreover, a complete analysis should also involve a non-
vanishing linear acceleration, terms in the mass matrix for
generic values of θG, the matter background effects, the ex-
tension to three and four neutrino flavors, that have been
neglected here, which could lead, among other things, to
more stringent limits on ∆γ. Such issues will be addressed
in the future.
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